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Influence of quantum fluctuations on solitary-wave acoustic 
polaron motion 

R Ruckh, G Seibold and E Sigmund 
lnstitut flir Theoretische Physik der UniversiW Stutlgatt, Pfaffenwaldring 57. 7000 SNtlgarr 
80, Federal Republic of Germany 

Received 19 February 1993 

Abstract. The theory of Wilson's solitary-wave amustic polaron motion is generalized to 
include the effects of quantum fluctuations and the non-adiabatic behaviour Of the electmn- 
phonon coupling. The polamn dynamics are described quanNm mechanically in terms of master 
equations for the electronic variables. As a final result, it emerges that due to the considered 
quantum effects for U < c (U = polaron velocity, c = sound velccity) the polaron behaviour is 
determined by lk well-known semiclassical non-linear ScWinger equation, whereas for U c c 
the polaron motion is overdamped but shows by no means a divergent behaviour as obtained in 
semiclassical theaies. In addition. for U = c the phonon cloud around the el%" disappears 
and the ekctmn motion becomes diffusive. 

1. Introduction 

In one-dimensional elecron-phonon systems the soliton concept has been successfully 
applied to explain charge and information transfer processes. Especially in polymers 
l i e ,  e.g., polyacetylene (PA) and polydiacetylene (PDA) solitary excitations as polarons 
and solitons dominate the transport properties instead of elecwns and holes [ I ,  2,3,4,51. 
Within this concept the temperature dependence of the soliton diffusion constant as derived 
by Maki [6,7] is in agreement with experimental data obtained for PA [8]. Furthemore, 
measured ultrahigh mobilities in PDA [2] are explained by the existence of polarons. In 
these transport models the solitary excitation is always believed to be a stable quantity. 
The interaction with phonons, however, can lead to a diffusive behaviour of the motion 
[6,7,9]. Results which are similar to the ones obtained in polymer systems can also be 
found in other soliton bearing systems, like, e.g., information transfer models in biological 
systems [IO] or sol i tq  polaron motion in molecular crystals [I  I ,  121. Polarons in molecular 
crystals are found to be stable against interactions with acoustic and optical phonons which 
was confirmed by solving a Boltzmann equation for polaron phonon interactions which were 
derived in a microscopic model. On the other hand, damping effects on solitons in biological 
systems were treated in tums of phenomenological damping constants by Davydov [IO]. 
This model yields reasonable results only in the limit of small soliton velocities compared to 
the velocity of sound. In the case of large soliton velocities Davydov argued that the soliton 
solutions become unstable with respect to the decay into an exciton. The same problem 
was discussed by Wilson 121, where the model of the solitary-wave acoustic polaron was 
successful in explaining high carrier mobilities at low fields. However, in this model the 
polaron solution diverges as the polaron velocity approaches the velocity of sound. Therefore 
one is led to the same conclusion as in Davydov's theory namely that the polaron becomes 
unstable against the decay into electronic conduction band states. 

0953-8984,5'3/264467+08$07.50 @ 1993 IOP Publishing Ltd 4461 



4468 R RUC!& et a1 

Campbell and Bishop [ 131 gave a qualitative estimate of the stability of different solitary 
excitations in PA. The calculations are based on the continuum version of the SuSchrieffer- 
Heeger (SSH) model [3,41 i n d u c e d  by Takayama, Lin Liu and Maki (TLM) [141. The 
kink-like soliton solutions are expected to be stable against quantum fluctuations due to their 
topological stability. On the other hand. two-particle excitations like polarons and bipolarons 
do not have this topological stability. Therefore it is argued that the adiabatic mean-field 
solutions derived From the TLM model might be unstable against quantum fluctuations for 
the case. of polaron excitations also. 

In this article we investigate the influence of quantum fluctuations on polaron-like 
excitations using the discrete SSH Hamiltonian. The basic problem lies in the formulation 
of equations of motion for the electron-phonon system. The use of adiabatic mean-field 
equations leads to a divergent polaron solution as the polaron velocity approaches the 
velocity of sound. Therefore, these equations are not applicable to describe the effect 
of quantum fluctuations being of importance only in the limit of high velocities. 

In section 2 we show, that the polaron solution can be derived from the equations of 
motion for the first moments of the relevant operators. The fluctuations are described in 
section 3 by the equations of motion for the second moments. As the polaron velocity 
approaches the velocity of sound, it turns out that the elechonic system can be described 
by the equations for the second moments alone. In these equations no divergencies appear. 

2. Equations of motion for the first moments 

We start from the SSH Hamiltonian [4] 

which, as shown by Wilson [Z], is also suited to describe acoustic polarons in PDA, although 
the SSH Hamiltonian was originally formulated for trans-PA. When applying (1) to PDA the 
definition of the unit cell changes. In PA the unit cell consirs of two C-H groups whereas 
in the case of PDA four carbon atoms form the unit cell. 

The displacements U, and momenta p,, obey the commutation rule (h = 1) 

[U,,. PJ- = iLm (2) 

k,+,C",I+ = 6n.m. (3) 

- i a r i  = [H, 21 (4) 

the following master equations for the expection values of phonon and electron operators 
(denoted by (cn))  are obtained 

arun = (I/Wp. (5) 
atPn = K [ K n + l + U n - i  - 2 t J n l + W [ ( C ; C n - i )  - ( C ~ + l C m ) + H C ]  (6) 
a&) = -i([J - a ( u ,  - u ~ - ~ ) I ( c ~ - ~ )  + [ J  -a(u,+i -u,,)I(c.-I)). (7) 

and c,f (cn) creates (annihilates) an electron at site n. The Fermi commutation d e  reads 

Using the Heisenberg equation of motion 
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We now solve equations (5)-(7) in a first step, Therefore we change the spacial difference 
equations into differential equations by applying the continuum approximation up to second 
order in the derivatives. e.g. 

unfl  = U, f a.u, + ;annun. (8) 

Further we assume the electronic expectation values (c:cn+l) to factorize into 

(c:cm) = (c,+)(cm). (9) 

This implies that the electron dynamics has coherent character. As long as the fluctuations 
are small the approximation (9) is justified. 

From (3-04) we obtain 

where 

is the velocity of sound. As an ansatz we now assume all variables in (10) and (11) to 
depend on f and n in the form 

r = t - n / u  (12) 

which means that we look for pulse-like solutions of (10) and (1 I), where U is the pulse 
velocity. This yields 

(1 - v2/c2)4n = (zol/fr)I(c”)l2 (13) 

(14) a,(c,) = -iJ (2q, + &&)) + 2icy(c,)qn 

where qn is defined as 

qn = anum. (15) 

Inserting (13) into (14) leads to 

a h )  = - i ~ ( ~ c ,  + a d  +2iA(u)(c.)l(cn)lZ (16) 

where 

A(u)  = 2(az /K) / ( l  - u2/c2). 

This equation corresponds exactly to the non-linear Schi-adinger equation obtained by Wilson 
[I] for the description of the polaron motion in PDA and to the equation for the excitation 



transfer in biological systems as derived by Davydov [lo]. The solution of (16) is the 
so-called Davydov soliton which is given by 

(c(n - u t ) )  = , / A m e x p [ i ( k n  - (n - ku - 2J)f)I 

x sech[(A(u)/2J)(n - ut)]  (18) 

with 

Q = - J ( k 2  - A2(u)/J2) 

k = u / 2 J .  

In the limiting case U + c the solitary-wave solution (18) diverges. This divergent behaviour 
was used by Wilson [2] for an estimate of the maximum mobility in PDA. He claimed that 
when the polaron is accelerated by an electric field its spatial extension can shrink with 
increasing velocity but only up to the extension of one lattice constant. This argumentation 
leads to a maximum mobility of 735 mz V-l s-I . I n this limit, however, the continuum 
approximation (8) is not valid. Furthermore, the factorization procedure (9) can no longer 
be applied to the electronic variables because, for fast solitons, quantum fluctuations, which 
are reponsible for the change to an incoherent behaviour, cannot be neglected. Therefore 
the equations of motion for the first moments are no longer suited to describe the electron- 
phonon dynamics and the equations of motion for the second moments have to be taken 
into account. 

3. Equations of motion for the second moments 

The divergent behaviour of (16) arises due to the factorization procedure (9) ofthe electronic 
expection values and the subsequent elimination of the lattice degrees of freedom by 
inserting (13) into (14). To overcome this difficulty we do not apply the factorization of 
(9) to (6). Instead we derive the master equations for the second moments of the electronic 
variables. Since the polaron solution (18) for the amplitudes diverges as U approaches 
c, we assume in the following the first moments (e:) and (cn) to be zero and describe 
the electron dynamics by the second moments (czc.). The resulting equations are rather 
complex since, e.g. equations of motion for the variable (cif&) contain terms of the form 
(c:cn+i), i = * I ,  k2 and also second-order moments of the phonon variables. Evaluating 
these equations leads to higher-order terms in the electron coordinates and so on. In order to 
find a solution for this set of equations we truncate the hierarchy by only considering nearest- 
and next-nearest-neighbour interactions in the electron system, Due to the complexity of 
the equations on a first view, an analytical approach seems to be impossible. However, 
as seen from (5 )  and (6). in the equations of motion for the first moments of the phonon 
variables no dissipative or fluctuation terms appear. This offers the possibility to describe 
the phonons by coherent states which means that the phonon system is determined by the 
first-moment equations, whereas the electrons are described by second-moment equations. 
Using (4) and defining 
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ankh) = (A(v)/a)IDT - D,',l. (26) 

In order to get a closed set of equations we expand the next-nearest-neighbour terms T. 
with respect to the nearest-neighbour terms Dn which yields 

In a first step we solve equations (24)-(26) by performing again the continuum 
approximation (8). It is impoltant to note, that Dn itself is non-local. Therefore, in spite of 
applying the continum approximation, the discrete structure of the equations of motion is 
not lost. Retaining nearest-neighbour interactions we obtain 

a,% = i(J/2)a,,D; - i l l  - C U ( ~ ~ ) I ~ ~ D , -  (28) 

(4") = (A(V)/U)D,C (29) 

aton - - -JanD: - iA(u)DiD: + i[J - A(u)@l[a.N, & HC]. (30) 

In the following procedure we have to express the second moments 0.' in terms of the 
occupation numbers N,. Therefore we apply the ansalz (12) to (30) which yields 

where we have neglected quadratic terms of 0.'. The inhomogenities of (31x32) can be 
taken as small quantities and substituted by their linearized expressions. 

We obtain 

Equation (34) can be integrated to give 

0,' = J/A(v) + Cexp N") . J I + u2/J2 (35) 
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The integration constant in (35) can be determined by the boundary conditions 

lim (9 ) - lim 0,' =O. 
n + i c c  " - n-r*tm 

This yields for C 

and the second moment 0,' is given by 

We note that for small velocities the exponential function can be expanded in a Taylor series 
which, with equation (26). yields 

This is, except for the factorization, the same relation between electron and phonon 
coordinates as in equation (13). which means that our calculations up to now give the 
correct results in the limit of small soliton velocities. 

To proceed we have to calculate the first derivative of the second moment 0;. Therefore 
we succesively integrate equation (33) up to the first non-linear term. This yields 

I A(u)  D;N., 
2 v  
J 1 f v 2 / J 2  

ianD; = - a"N. - - 
J 1 + v 2 / J 2  

Inserting (38) and (40) into equation (28) we obtain as a final result 

U 2v 2 A(v)  a, N" = l+vz / J2anRNn-  l+vZ/J2 N.exp ( -- J I + v 2 / J 2 N n )  (41) 

where we have neglected non-linear terms in the first derivatives of N,. 

equation 
In the limiting case, U -+ c, the non-linear term vanishes and we obtain the diffusion 

a, N ,  = Dan, N". (42) 

The temperature dependence of the diffusion constant can be estimated by averaging the 
velocities with the Maxwell-Boltzmann distribution which yields 

D = (v/( l  + u z / J 2 ) )  (43) 

that is 

D - I/& - ( 2 / m J 2 ) & .  

This temperature dependence is in qualitative agreement with the magnetic resonance 
experiments of Kume et a! [IS]. 
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We see that for the case of very large fluctuations. e.g. when A(u) diverges, the polaron 
solution is destroyed. Therefore no coherent lanice distortion exists which could stabilize the 
polaron. In this case, electronic motion becomes diffusive as can be seen from equation (42). 

The destruction of coherent motion in the limit U --f c is also displayed in the degree 
of coherence defined as 

which vanishes in the case of no coherence and takes on the value K = 1 for factorizing 
variables. Using the abbreviations (21x23) we can rewrite K as 

K = Tn/-. (46) 

Expanding the next-nearest-neighbour term T, with respect to Dn (equation (27)) one can 
immediately see from (38) that the degree of coherence continously reaches zero for U 
approaching the velocity of sound. 

In the case U .c c the exponent in (41) can be expanded up to first order in N,. We 
obtain 

v a ~ -  2u Nn ( I - -  A(u)  Nn). 
1 + u 2 / J 2  nn ' 1 + u 2 / J 2  J I + u 2 / J 2  

a, N" = (47) 

This equation describes an overdamped polaron motion and can be solved by a perturbation 
calculation 1161. The zeroth-order solution (zero damping) reads 

35  
N, = - ( I  + u2/J2)sech2[(n - nd/&].  

4 4 ~ )  

Obviously, the sech-behaviour of the classical polaron solution (18) is reproduced in the 
limit U .c c. We note that corrections to the zeroth-order solution can be obtained by 
a perturbative expansion of the variables N, and U [ 161. However, the electronic master 
equation (47) is a generalization of the classical adiabatic polaron theory of Wilson 121. It is 
derived from the master equations (24)-(26) and contains the effects of quantum fluctuations 
and dissipation. 

4. Conclusion 

We have shown that the treatment of the dynamics of the electron system (1) in terms of 
master equations for the second moments leads to quantum mechanical transpon equations 
which describe the polaron dynamics in the presence of quantum fluctuations and under 
the influence of a non-adiabatic electron-phonon interaction. In contrast to the classical 
adiabatic polaron solution (1 8). the master equations are valid for arbitrary polaron velocities. 
Even for U = c no divergencies occur in the solutions. This enabled us to show analytically 
the decay of a solitary polaron due to quantum fluctuations into an electron moving 
diffusively, as postulated by Wilson 121. 
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